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ON THE VALIDATION OF A CODE AND A TURBULENCE MODEL APPROPRIATE TO CIRCULATION CONTROL AIRFOILS
by

J. R. Viegas and M. W. Rubesin
NASA Ames Research Center, Moffett Field, California, USA

and
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ABSTRACT

A computer code for calculating flow about a circulation control airfoil within a wind tunnel test
section has been developed. This code is being validated for eventual use as an aid to design such air-
foils. The concept of code validation being used is explained. The initial stages of the process have
been accomplished. The present code has been applied to a low-subsonic, two-dimensional flow about a
circulation control airfoil for which extensive data exist. Two basic turbulence models and variants
thereof have been successfully introduced into the algorithm, the Baldwin-Lomax algebraic and the Jones-
Launder two-equation models of turbulence. The variants include adding a history of the jet development
for the algebraic model and adding streamwise curvature effects for both models. Numerical difficulties
and difficulties in the validation process are discussed. Turbulence model and code improvements to pro-
ceed with the validation process are also discussed.

INTRODUCTION

Code Vailidation Process

The requirement of validating codes for computational fluid dynamics (CFD) has taken on increased
emphasis is recent times. The primary reason for this is that the field of CFD has matured to the point
that now it can be considered one of the major tools available to the aircraft designer, namely, an addi-
tion and complement to experimental data from wind tunnel and flight tests. However, in order for codes
to be used with confidence, designers must know the accuracies and limitations of such a code. The pro-
cess of establishing these code characteristics has come to be known as code validation.

To the authors, the validation process means developing a computer code whose results agree with the
principal aerodynamic data from one or more experiments. These data are the usual force and moment coef-
ficients and visualizations of the flow fields. It is required, however, that the experiments be those
with known accuracies and unambiguously defined boundary conditions surrounding the test section, includ-
ing information on the turbulence intensity and scale at the upstream station. The experiments should
also cover a range of variables, such as configurations, Reynolds numbers, Mach number, jet momentum coef-
ficients, etc., that envelop those of the proposed application.

Advances in the development of supercomputers and computational codes have permitted computations, at
reasonable costs, of flow field configurations having a complexity approaching that of complete aircraft,
when the computations are restricted to inviscid flow. For more realistic physical modeling, configura-
tions such as wing-body combinations can be solved. These advances reflect the considerabie improvements
that have occurred in techniques for the generation of computational meshes and in solution algorithms in
recent years. Currently, there arc no inherent limitations on the numerical accuracy that can be achieved
with these CFD codes other than their computational expense introduced by additional mesh points and the
use of higher order solution techniques. There is a practical 1imit, however, to which numerical accuracy
needs to be driven because all the codes contain certain errors that result from the approximate “"physics"
which has been introduced into them. For example, panel methods and Euler codes ignore viscous effects
and Reynolds averaged Navier-Stokes codes contain only approximate statistical turbulence models. An
intelligent use of computer codes has to give consideration to the specific accuracy needs of the designer
and, concomitantly, requires an assessment of the errors introduced in the codes by the approximations to
the "physics" contained in the codes. Requiring numerical accuracies to be much more stringent than those
inherent in Lhe physical aspects of a code is economically unwise and not beneficial to the designer.
Thus, the establishment of the magnitude of the errors introduced by various physical approximations over
a range of flow variables and configurations is critical to the code validation process. The validation
process also serves to uncover lower order logic errors and/or "bugs" that often creep into very large and
complex codes and produce subtle, but significant, numerical errors in the results.

In this paper, the initial stages of a validation process are demonstrated with a code that is being
developed to compute the performance of circulation control airfoils, where 1ift is augmented by a surface
jet flowing tangentially over the airfoil's blunt trailing edge. The jet adheres to the surface of the
airfoil through the Coanda effect. From a turbulence modeling viewpoint the flow over a circulation con-
trol airfoil is exceedingly complex, containing such features as surface jets and free shear layers where
the jet and and the upper boundary layer merge. Each of these regions experience the complicating effects
of both high streamwise curvature and adverse pressure gradients. In addition, boundary-layer separation
occurs somewhere within the Coanda region where the jet can no longer move forward against an adverse
surface pressure gradient, A1l these effects combine to introduce large pressure gradients normal to the
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airfoil surface and recirculation regions, both of which require flow-field solutions to be solved in the
Navier-Stokes mode. This paper first describes the development of a computer code that solves the
Reynolds-averaged Navier-Stokes equations about the trailing-edge region of a circulation control airfoil
in free air. This same code is then extended to apply to an entire airfoil within a wind tunnel test
section by including the presence of upper and lower walls. It is this latter arrangement that makes this
code particularly suitable for calibration and, ultimately, verification. The code verification process,
both in its numerical accuracy and in fts turbulence model, can be performed with much less ambiguity
because the code can duplicate the wall effects of wind tunnel experiments, provided the flow remains
essentially two dimensional. A particularly important experiment such as this has recently been conducted
and reported in Ref. 1. Parts of the data of this experiment are used in this paper as standards against
which to calibrate the performance of the code with a variety of turbulence models and to suggest the
improvements needed in the best of the models. The remaining parts of the available data, that is, the
aerodynamic force data over extensive ranges of jet mass flow rates and angles of attack, will be used
subsequently to validate the code with the most appropriate turbulence model identified in this initial
calibration process.

Computation Method

The computational code employed here uses an extension of the Gauss-Seidel relaxation method proposed
by MacCormack in 1985 (Ref. 2). This is an implicit, finite volume method that uses flux splitting. The
extensions involve the introduction of second-order space accuracy for the flux-splitting technique and an
improved treatment of source terms contained in advanced turbulence models that reinforces the diagonal
dominance of their implicit representation and accounts analytically for each of the source contributions
(Ref. 3). The resulting code is robust, receptive to different turbulence models, and can use complex
mesh arrangements. The acceptability of complex meshes allows the introduction of the wind tunnel walls
into the problem, which is critical to the concept of code validation because it allows, in principle,
accounting for wind tunnel interference in an unambiguous manner. The code is known to be efficient for
flows at transonic and supersonic speeds, but is somewhat slower at the speeds considered here. The
latter is a disadvantage in the current work where the improvement of turbulence models requires testing
with many repeated runs; however, the ultimate goal of this study is the design of circulation control
airfoils operating in transonic flow and for this the code should be effective.

Earlier Results

The earliest application of this code (Ref. 4) was to the experiment of Ref. 5. To save computer
time, witnout sacrificing resolution, the Navier-Stokes computational zone was confined to the immediate
region of the trailing edge. The conditions at the boundaries of the zone were estimated from a limited
number of velocity measurements, educated guesses of the jet conditions corresponding to the measured mass
flow rate, and estimates of total pressures, total temperatures, and flow angles along incoming boundaries
and static pressures at outflow boundaries. Subsequently, an analytical potential flow solution for an
elliptic cross section airfoil was used to provide the flow angles at the inflow boundaries and static
pressures at the outflow boundaries. These boundary conditions and the potential flow solution provided
the solution in which the Navier-Stokes zone was immeshed. This surrounding solution will be called the
“ambient" solutfon in the descriptions that follow. Only algebraic models of turbulence (Refs. 6 and 7)
and variants required to account for the jet boundary-layer mixing and curvature were used in these
calculations. These variants will be described later in the section of this paper entitled Turbulence
Modeling. It was found that the computed results were very sensitive to the particular turbulence model
employed and to small changes in the estimates of the boundary conditions.

To obtain a firmer understanding of the use of a local Navier-Stokes zone (NS zone) at the trailing
edge of a circulation control airfoil, comparisons were next made with the wind tunnel data of Ref. 8. The
ambient solution used in this case was provided by the Navier-Stokes computations of Ref. 9. The outer
boundary of these computations extended away from the airfoil to distances well beyond the wind tunnel
walls, and the effect of the tunnel walls were accommodated by using corrected angles of attack as recom-
mended by the experimentalists. The turbulence model employed in the calculations of Ref. 9 was the
Baldwin-Lomax model, but with modifications to account for the intense streamwise curvature in the
trailing-edge region of the airfoils. A coefficient in the curvature correction term was altered for each
stream velocity and trailing-edge configuration to achieve agreement in 1ift and surface pressure coeffi-
cients with the experimental data (Ref. 8). Thus, the method of Ref. 9 could not be considered predictive
in that the "calibration constant" varied from case to case. It was these inadequacies that added an
impetus to the current work.

To compute the details of the flow in the trailing-edge region of the airfoil tested in Ref. 8, the
local NS zone was imbedded in the ambient solution supplied by the complete Navier-Stokes solution
(Ref. 9) as is shown in Fig. 1. The complete Navier-Stokes computation of Ref. 9 was used to define the
boundary conditions on the local zone as described previously. On the upstream boundaries these involve
the total pressure, total temperature, and flow angles (also the turbulence kinetic energy and dissipation
rate if needed by the turbulence model) in the stream and in the jet. The downstream boundary conditions
are determined from the static pressure distribution of the ambient solution along the circular bound-
ary. With these boundary conditions there is no assurance that the stream angles on the outflow boundary
of the local NS zone would agree with those of the ambient solution at the same location unless the two
solution techniques are compatible. To permit focusing on numerical compatibility, an identical turbulence
model, Baldwin-Lomax plus curvature correction, was employed in the local zone as was used in the cali-
brated ambient solution. The test of the compatibility between the two solutions was to adjust the mass
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flow rate of the jet entering the local NS zone until the stream angles within the zone at the exit bound-
ary agreed with those of the ambient solution. Note that the mass flow and momentum flow rates in the jet
are small compared to those of the inlet or exit boundary, so that changes in the jet conditions from
those consistent with the experiment or the ambient calculation of Ref. 9 should not introduce serious
mismatches in the conditions at the exit boundary. For the test case of Mach number equal to 0.3, zero
geometric angle of attack, a circular trailing edge, and C = 0.0322 of Ref. 8, it was found that a
reduction of about 10% from the actual jet mass flow rate entering the local computation zone in the
ambient solution yielded the agreement in out-flowing streamlines shown in Fig. 2. Here the closely
spaced streamlines are from the local zone calculation and the sparse streamlines from the base ambient
solution. Thus, the matching procedure, as well as innate differences between the current code and that
of Ref. 9, resulted in uncertainties of about 10% in jet mass flow rate required to produce a given 1ift.

Figure 3 shows a comparison of the experimental pressure coefficients in the Coanda region with the
corresponding computed values from the ambient solutfon code and the immeshed local Navier-Stokes code
with the same turbulence model as was used in the ambient solution code and with two additional models.
The experimental data from Ref. 8 are designated with open circles, whereas the computed results are shown
as solid lines. Figure 3(a) shows this comparison with the computed results of Ref. 9, when the basic
turbulence model (Ref. 7) is modified by the calibrated streamwise curvature correction. The agreement in
the pressure coefficients is quite good, when consideration is given to the comparatively large spacing
between the pressure taps. Figure 3(b) shows a comparison of the data with the computed results of
imbedded code calculation, using the same turbulence model as in the ambient calculation, but with 10%
less mass flow in the jet. The agreement with the experimental data is almost identical with that of the
ambient solution shown in Fig. 3(a). Figure 3 also shows the effect of the turbulence model calibration
recommended in Ref. 9. This can be seen in the comparison between Figs. 3(b) and 3(c), where the cali-
brated curvature correction was removed from the imbedded flow calculation, but with the adjusted mass
flow rate of the jet still retained. Removing the curvature correction degrades the accuracy of the com-
puted values. Finally, Fig. 3(d) shows computations with a two-equation model (Ref. 10) without any cur-
vature correction, but with the experimental mass flow rate. These results are also poorer than the case
with the “"calibrated" reduced mass flow (Fig. 3(b)).

Current Approach

The work just described served to give credence to the current numerical method and suggested contin-
uing its use in developing a turbulence model that did not require alterations for each test condition for
the circulation control airfoil. To develop such a turbulence model requires guidance from careful and
rather complete experiments, that include measurements of the flow field as well as surface pressure
and/or overall forces. Fortunately, an experiment such as this exists (Ref. 1) although it is restricted
to fairly low free-stream speeds. The experimenters did not, however, measure profiles of the local flow
conditions at the entrance to the wind tunnel test section, and this omission is a cause of concern as
will be explained tater in this paper. The wind tunnel model in this experiment was large enough to allow
some resolution of flow field quantities necessary to define the conditions of the exiting jet and to aid
in assessing the performance of the turbulence model. The large size of the model, however, introduced
wind-tunnel-wall interference; the tunnei walls were only a few chords away from the wind tunnel model.
The experimenters were conscious of the possibility of wind tunnel interference and took care to define
the static pressures along the upper and lower walls of the wind tunnel. Thus, to be able to use these
data to calibrate codes, guide turbulence modeling and, subsequently, verify the code-model combination,
it is necessary to eliminate the uncertainties introduced by the wind tunnel walls by including their
presence into the calculation. Since the spiral mesh in the code of Ref. 9 could not do this readtly, and
also could not accept higher order models easily, it was decided to expand the code developed here from
one of a local zone to a complete one that encompasses the entire airfoil and the wind tunnel walls.

CODE DEVELOPMENT

Computation Grid

The grid selected for computing the flow of Ref. 1 is shown in Fig. 4. This grid is generally an
0-mesh contoured to fit between the tunnel walls and the airfoil and extends upstream and downstream to
the limits of the wall surface pressure measurements, The grid shown contains 126 nodal points in the
circumferential direction and 80 in the "radial” direction. This grid can be readily altered locally if
more resolution is needed. A unique feature of this grid applied to the circulation control airfoil is
that mesh grid Tines that emerge from the jet and and its 1ip are allowed to pass forward under.the air-
foil and then collapse to a singular point at the airfoil leading edge. Details of this mesh in the
vicinity of the jet and over the entire trailing edge, or Coanda region, are shown in Figs. 5 and 6. The
mesh stretches and shrinks in the outward direction from the body, guided by the need to define the jet
region adequately. 1In the jet, the mesh stretches away from both walls symmetrically. In the mesh shown,
32 points are used to resolve the jet and the jet 1ip. The mesh behind the jet 1ip is also stretched,
inwardly from the 1ip surfaces, but is presently fairly coarse, containing 12 points in the mesh shown. It
proved to be adequate to assure mesh independent solutions. The mesh contains 48 points stretched from
the top surface of the jet 1ip to the tunnel wall above the jet. Throughout the remainder of the control
volume, the mesh stretching described above for the plane of the jet exit is made proportional to the
distance from the body to the outside boundaries. Additional test computations were performed with the
mesh dimensioned numbers diminished by a factor of 0.7 in both the direction between the airfoil and the
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walls and in the circumferentia) direction. It was found that the results were insignificantly differ-
ent. It is believed, therefore, that the results shown in this paper are essentially mesh independent.

Boundary Conditions

As previously mentioned, it had been found in the earlier study, Ref. 4, that the computational
results for flow about the trailing edge of a circulation control airfoil were very sensitive to the
boundary conditions employed. It is felt that this same sensitivity prevails in calculations over the
full airfoil, especially when the effects of the tunnel walls are included in the calculations. The flow
of Ref. 1 was chosen for this study because it presented the most detailed data available for circulation
control airfoil code validation. However, even this well documented experiment contains regions along the
boundaries where more complete data would be desired. In the present study, care is exercised to repre-
sent the boundary conditions as accurately as possible and with reasonable approximations often substitut-
ing for missing information.

No-slip and adiabatic boundary conditions are used on the surface of the airfoil. S$lip flow and
adiabatic boundary conditions are used on the wind tunnel walls. Subsonic boundary conditions based on
the method of characteristics are used at all inflow and outflow boundaries. At the upstream boundary of
the control volume, x/c = -2, the total pressure, total temperature, and the flow angle are specified. In
a complex subsonic flow such as this the influence of the circulation can extend far upstream and down-
stream of the airfoil. There is evidence in the data of Ref. 1 that this might also be true for this
case. Under such conditions, a distribution of total pressure, total temperature, and flow angle would
need to be specified everywhere along the upstream boundary to accurately represent the flow entering
control volume. For the turbulent field equations, distributions of the kinetic energy and the energy
dissipation rate also need to be specified. The latter quantity is extremely difficult to measure, how-
ever, profiles of the more easily measured quantities were also not provided in Ref. 1 at this inflow
boundary. Thus for the present computations the total pressure and total temperature were taken as con-
stants corresponding to the stagnation chamber conditions for the experiment of Ref. 1. For the low jet
momentum case, the pressure on the upper and lower tunnel walls were nearly equal and, consequently, the
velocity was assumed to be horizontal along this inflow boundary. Ffor the higher jet momentum case, where
the upper and lower wall static pressures were clearly different, the flow angle angle distribution on the
boundary was estimated from a solution of the low-blowing case at a station closer to the leading edge of
the airfoil where similar pressure differences existed between the walls. The kinetic energy and the
associated energy dissipation rate were assumed constant at values that might correspond to the outer edge
of an equilibrium boundary layer at the tunnel test conditions.

At the downstream, or outflow, subsonic boundary, only a precise specification of the static pressure
distribution is needed to obtain a solution. The experiment did not provide a pressure distribution in
the flow field at this boundary, but the equal tunnel-surface-pressure data at the upper and lower walls
at this location suggest that a constant pressure corresponding to their measured values would be reason-
able for use on the entire outflow boundary.

At the jet entrance boundary, distributions of the total enthalpy, the mass flux, and the flow angle
distributions were specified. These values were estimated from the velocity profiles and flow angles that
were provided by the laser doppler velocimeter (LDV) data in the vicinity of the jet exit, as well as from
the total jet plenum conditions and the jet mass flow rate. This specification enabled an exact duplica-
tion of the jet momentum coefficient, a key parameter in the calibration of circulation control airfoil
performance. The kinetic energy and energy dissipation rate distributions in the jet were assumed to be
constants equal to the estimated values in the free stream at the entrance to the tunnel test section.
This assumption and possible consequences are discussed more fully in the next sectton.

The computations were initiated by assuming no flow throughout the control volume and applying the
tunnel total conditions at the entrance and tunnel static pressure at the exit. The jet is gradually
introduced by controlling the mass flow rate. From this gentle start the flow relaxes smoothly, but some-
times with a persistent, but damped oscillation, to convergence.

Turbulence Modeling

Although it is known (Ref. 11) that full second-order, Reynolds-stress turbulence modeling captures
the anisotropies and related reduction of skin friction that develop over convex curved surfaces such as
exist at the trailing edge of a circulation control airfoil, this level of modeling is currently too
costly in terms of algorithm derivation and computer run times to be considered at the current stage of
development of the present computer code. Consequently, the turbulence models used in this study employ
the simplifying concept of an eddy viscosity.

The basic turbulence models that were used here fall into two categories. The first is an algebraic
model, developed by Baldwin-Lomax (Ref. 7). The second is the two-equation model, developed by Jones and
Launder (Ref 10). As these models are most appropriate for ordinary attached boundary layers, variations
of each of these models were also employed to account for the history of the development of the free shear
layer between the jet and the upper surface boundary layer for the case of the algebraic model, as described
later, and/or for the extreme streamwise curvature of the trailing and leading edges in both models.

The LDV data of Ref. 1 indicate that the boundary layers approaching the trailing edge region on both
the upper and lower surfaces of the airfoil are turbulent. The experimentors tripped the boundary layer
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at x/c = 0.075 on the lower surface, and suggest that transition to turbulence also occurred on the
upper surface very close to the leading edge. For these reasons, the turbulence was assumed to occur from
the leading edge for the algebraic models. For the two-equation model, transition to turbulence occurs
automatically when free-stream turbulence is introduced, although the location and extent of transition is
not necessarily physically correct. For this model, the calculations indicate transition is complete by
x/c = 0.05 on the upper surface, but as late as x/c = 0.4 on the lower surface., It is expected, how-
ever, that this late transition on the lower surface will have only a secondary influence the overall
behavior of the circulation control jet.

Recall that the Baldwin-Lomax model, which is divided into two zones, treats the inner zone with the
van Driest form of the mixing length, which increases monotonically with distance from the surface. The
extent of the inner zone is determined by the location of the point where the product of the distance from
the surface and the absolute value of the local mean vorticity first becomes a maximum. The size of the
eddy viscosity over much of the boundary layer is established by the value of the eddy viscosity at this
point. In the region over the trailing edge where the presence of the jet is still distinct, this maximum
occurs very close to the surface, well below the point of maximum velocity in the jet. Since the total
jet height in the experiment of Ref. 1 is only approximately 5% of the upper-surface boundary-layer thick-
ness at the 1ip of the jet, it is seen that the Baldwin-Lomax model applied to the jet boundary layer
interaction largely ignores the much larger scales of the entrained boundary layer. Thus, the eddy vis-
cosity in the free-interaction zone between the surface jet and the boundary layer as given by the
Baldwin-Lomax model can be expected to be too low, which 1imits mixing with the free shear layer and in
turn permits the surface jet to maintain larger velocities as it moves around the trailing edge; however,
the eddy viscosities near the surface, below the position of the maximum velocity in the jet are scaled
properly. When combined with the faster moving jet, these proper eddy viscosities allow separation to
occur farther downstream.

To assess the importance of this apparent deficiency of the Baldwin-Lomax model, the basic model was
modified to account for the distribution of the eddy viscosities within the jet at its exit and the bound-
ary layer above the jet 1ip. MWithin the jet, these eddy viscosities were established by assuming the jet
to behave as two boundary layers separated by an inviscid core. This assumption was found to be consis-
tent with the total mass flow rate of the jet and the laser doppler velocities as measured in the experi-
ment of Ref. 1. In the top surface boundary layer at the 1ip of the jet exit, the eddy viscosities were
established as part of the overall computation process. To account for the "history" of the jet develop-
ment, these eddy viscosities at the jet exit station were then blended with the local eddy viscosity given
by the Baldwin-Lomax model through a linear weighting function that gave full weight to the upstream
values at the jet exit and full weight to the Baldwin-Lomax model at the trailing edge. No attempt was
made to optimize the length of the region of blending. The process was used only to gain some insight
into the effects of the apparent shortcomings of applying the Baldwin-Lomax mode} to the present prob-
lem. Corrections for the effects of streamwise curvature were made as recommended in Ref, 9.

With the two-equation model, the interaction of the jet and boundary layer proceeds as part of the
overall solution process. In contrast to the mixing length model, no new modeling in the jet-boundary
layer interaction zone was required. It was necessary, however, to define boundary conditions for the
kinetic energy and energy dissipation rate at the exit plane of the jet. The laser doppler data of Ref. 1
show rather intense turbulent kinetic energy emerging from the jet, however, no consistent way could be
found to estimate the corresponding kinetic energy dissipation rate at the jet exit, To permit proceeding
with the solution of the two-equation model, it was decided to bypass the problem of arbitrarily assigning
dissipation rates to the measured kinetic energies by merely assuming that the values of the kinetic
energy and dissipation rate at the jet exit were the same as was estimated at the inflow boundary of the
wind tunnel test section. Although this appears to be a rather poor assumption, it is not believed that
it introduces serious error in the solutions because ft was noticed that both the kinetic energy and dis-
sipation rates increased very rapidly downstream of the jet exit to values consistent with those that
occur within shear layers., Future studies will examine the sensitivity of the solutions to altered
assumptions regarding the turbulence conditions at the jet exit.

To account for the intense streamwise curvature in the Coanda region, the methods of modifying the
two-equation model for curvature recommended in Ref. 12 were adopted here. In this method the coefficient
in the destruction term of the dissipation equation 1s modified by a correction factor equal to one minus
a curvature coefficient times a Richardson number. The modeling coefficient accounting for curvature was
set equal to the recommended value of 0.2. The radius of curvature employed in the Richardson number was
set equal to that of the surface of the model, not local values along the streamlines. This was done for
expediency; however, it is not believed to introduce serious error because those regions where the tangen-
tial jet plays its most important role are quite close to the body surface. Because the streamwise curva-
ture terms are meant to be perturbations to uncorrected models of turbulence, the curvature correction
factor was restricted to values between 0.25 and 1.75,

RESULTS

Test Conditions

The computations shown in this paper apply to the experimental conditions of Ref. 1 where both flow
field velocities and surface pressures were measured. In particular, computed results are presented for
the following:
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Test section conditions:
Velocity, U = 42,50 m/s
Chord Reynolds number = 10
free-stream Mach number = 0,121
Total temperature = 303.2 K
Total pressure = 98952.0 N/m2

Model conditions:
Chord of airfoil, ¢ = 0.382 m
Angle of attack = 0°
Dimensionless jet height, h/c = 0.002
Ujot/VUfree stream = 3-44 and 5.69
Jet momentum coefficient, Cu = 0.03 and 0.1

Although Ref. 1 contains afrfoil surface pressure data over a range of angles of attack from -5° to +5°,
and includes jet momentum coefficients up to about 0.4, the computations shown here were confined to those
just indicated because it was under these conditions that LOV measurements were made in the trailing-edge
region. These velocity measurements were used in the computations to define the mean flow conditions at
the jet exit, and as standards for comparison with the computed results. Of course, in the final valida-
tion process of the computer code with its best turbulence model, the entire range of the test conditions
of Ref. 1 should be computed and the results compared with the surface pressure data, 1ift, drag, and
pitching moments.

Example of Flow Field Results

Figures 7 through 9 show examples of the flow fields computed about the circulation control airfoil
in the wind tunnel test section. This group of computations is based on the unmodified Baldwin-Lomax
model and apply to the lower jet momentum coefficient equal to 0.03. Figure 7 shows the streamlines about
the airfoil within the entire test section. The overall effect of the circulation control jet is evident
in the downwash shown at the trailing edge and in the upwash at the leading edge that is induced by the
circulation that has been created. It is significant that a larger proportion of the wind tunnel airflow
passes over the airfoil than underneath, and is an indication that wind tunnel wall interference is likely
to be important in these experiments.

It should be noted that the plotting routine used here has difficulty in accounting for the presence
of the jet in evaluating the absolute numerical values of the streamlines because of a loca) new source of
mass. Accordingly, the 1ines shown should be considered to be streaklines. The specific numbers on the
lines are not proper stream function values and are used here merely as line identifiers. The anomalous
behavior can be seen in the enlarged figures as stagnation lines that do not meet the surface of the air-
foil or those that are inconsistent with the velocity vectors near the trailing edge. Farther from the
airfoil surface the streaklines agree quite well with the corresponding velocity vector fields.

The details of the flow field in the leading-edge region are shown in the expanded plots of Fig. 8,
where (a) shows the streamlines and (b) shows the velocity vector field. The latter figure indicates that
the stagnation point occurs at about 2% of chord on the lower surface of the airfoil. The velocities
passing over the leading edge to the upper surface are much larger than the free stream values and suggest
considerable leading edge suction. There is no evidence of a leading-edge separation bubble on the upper
surface.

Similar detailed flow field results are shown at the trailing edge in Fig. 9. On Fig. 9(a), the
streamline labeled 0.00, away from the surface of the body, is approximately the lower bound of the free-
stream air passing over the top of the airfoil. It shows that the trailing edge jet hugging the surface
is effective in inducing considerable downwash at the trailing edge. The presence of the jet is very
evident in Fig. 9(b), and 1t can be seen to exist well around the trailing edge. It should be noted,
however, that the jet has separated from the surface a short distance ahead of the trailing edge. This
cannot be seen clearly from the figure, but is detected in the calculated skin friction directions.

Comparative Turbulence Model Performance

Figure 10 and Table 1 show the computed predictions of the the 1ift coefficients in comparison with
the experimental results of Ref. 1. The 1ift data were obtained in Ref. 1 from integration of the experi-
mental pressure distributions about the airfoii. The calculated 1ift was computed in a similar way from
the local caiculated surface pressures. For this paper, most of the airfoil computations were performed
for the jet momentum coefficient equal to 0.03, with just one case shown for Cu = 0.1. Recall these were
the jet conditions where laser doppler measurements were made of the trailing edge flow field in addition
to surface pressure measurements on the model. The turbulence models indicated here were described in a
previous section.

It 1s observed from the figure and the table that the basic Baldwin-Lomax turbulence model yields
results that are approximately 50% higher than the data at each value of the jet momentum coefficient.
Including the effect of the jet history causes the 1ift to rise. The reason for this is that the jet at
its exit, as assumed in the calculations, possesses quite a low value of eddy viscosity relative to that
which the Baldwin-Lomax model would predict for the stations downstream of the jet exit. Consequently,
the weighting procedure adopted to account for the jet history lowers the eddy viscosities in the free



shear layer between the jet and the overlaying boundary layer. The result of this 1s to reduce the mixing
and, hence, the retardation of the jet and to allow it to move farther around the Coanda region. Alterna-
tively, the near wall eddy viscosities are not affected much by the jet history weighting. The combined
effect of less jet retardation and similar eddy viscosities in the vicinity of the wall cause the point of
separation to move farther around the trailing edge, which in turn, contributes to the increased 1ift. It
is interesting that the Jones-Launder model yields essentially the same results, which indicates that the
history effects that are inherent in the two-equation mode)l were fortuitously approximated with the
weighting procedure adopted here for the Baldwin-Lomax algebraic model.

The effect of the curvature correction in the algebraic model is to reduce the lift. With the value
of the curvature correction coefficient, CC. introduced in Ref. 9 set equal to 8.0, it is found that the
Jift is still about 37% higher than the experimental value at C = 0.03. The reason for the reduction of
1ift introduced by the curvature correction is that it reduces the eddy viscosity between the maximum
velocity in the jet and the wall, while generally increasing the eddy viscosity in the interaction zone
between the jet and the exterior flow. Thus, the jet is retarded more by the external flow and increas-
ingly susceptible to separation. These effects combine to move the separation point towards the jet exit
and result in a reduction of the overall 1ift. To approach the experimental data by reducing the lift
even more, some runs were made with the code with values of C. = 10.0 and 12. It was found that the
increment of reducing the 1ift diminished and that some period?c oscillations were introduced into the
solution. Also, these values of Cc are an order of magnitude larger than those required in Ref. 9 to
achieve agreement with the data of Ref. 8. It is believed that the difference in the way the two codes
behaved in their comparisons with the different experiments was primarily the result of the freedom
enjoyed in Ref. 9 of also being able to adjust the angle of attack. Because of inherent weaknesses of the
Baldwin-Lomax model's ability to handle the complexities of this flow, we did not pursue this matter fur-
ther at this time.

) The last modification made to the Baldwin-Lomax model was to combine the effects of jet history and
curvature. As expected, the effects tended to cancel and resulted in values of 1lift close to that of the
original Baldwin-Lomax model. The Jones-Launder two-equation model, corrected for curvature as in
Ref. 12, also yields results that are quite similar to those of the original Baldwin-Lomax model, or its
variants that contain curvature corrections. This conclusion is not unique to the circulation control
airfoil, but has also been demonstrated in the computation of transonic airfoils without curvature correc-
tions (Ref 13). For a circulation airfoil, then, the only advantage of using the Jones-Launder two-
equation model is its ability to account for the jet history without additional modeling assumptions. It
is known that the performance of the Jones-Launder model can be improved considerably, and procedures for
doing this are listed later in the description of the future directions this code validation process may
take.

The streamline patterns in the trailing edge region of the circulation control airfoil corresponding
to the different variants of the Baldwin-Lomax model are shown in Fig. 11. These are in agreement with
the explanations given above for the behavior of the 1ift, and can be seen best by comparing the positions
of the streamline labeled 0.01 in Figs. 11(a) to 11(c). With reference to Fig. 11(a), corresponding to
the basic Baldwin-Lomax model, the strea.alines in Fig. 11(b), including the effects of jet history, show a
decided movement clockwise around the trailing edge which is reflected in increased 1ift. The curvature
correction alone, Fig. 11(c) shows a counter-clockwise movement relative to Fig. 11(a). Finally, the
combined effects of jet history and curvature corrections, as shown in Fig. 11(d), bring the streamline
pattern almost back to its original form (Fig. 11(a)).

Figure 12 shows the flow field in the trailing-edge region corresponding to the smaller jet-mass
coefficient, cu = 0.03, when the basic Jones-Launder two-equation model is used. As expected from the
comparisons of the results for 1ift, the stream pattern shown in Fig. 12(a) is virtually identical with
that of Fig. 11(b), corresponding to the Baldwin-Lomax model with jet history. The vector plot
(Fig. 12(b)) shows separation to occur on the surface of the airfoil just beyond the trailing edge in a
clockwise direction. It is remarkable how large a “"dead water region" (i.e., very low velocity) exists
Jjust below the trailing edge. The relatively large spacing between the streamlines labeled 0.000 and
0.016 on Fig. 12(a) are also indicative of this.

A comparison of Figs. 12(a) and 12(c) shows the effect of the curvature correction on the Jones-
Launder model on the streamline pattern in the trailing-edge zone. Near the surface, the curvature cor-
rection introduces a decided counter-clockwise motion to the flow field. In addition, there is signifi-
cantly less downwash in the far field. The vector fields, shown in Figs. 12(b) and 12(d), support these
observations and give more detail of the jet behavior near the surface. The identity of the jet remains
evident to farther clockwise positions without the curvature correction. This flow pattern behavior is
consistent with an increase in the jet-free stream mixing and a significant reduction in the 1ift as a
result of the curvature correction.

Figure 13 shows the streamline pattern around the entire airfoil corresponding to the basic Baldwin-
Lomax model for the two values of jet momentum coefficient used here. Figure 13(a) is a blowup of the
streamline pattern shown earlier in Fig. 7 for C = 0.03. Figure 13(b), corresponding to Cu = 0.1,
shows how dramatically the flow under the entire airfoil is affected by the increase in the jet momentum
coefficient. The air exiting the jet is seen to circulated about the airfoil. The air that originally
passes over the upper surface of the airfoil is thrown forward under the airfoil to about 20% chord by the
circulation control jet. The complexities of this flow certainly tax the bases of the Baldwin-Lomax
model, the only one used to date for this flow condition.
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Figure 14 shows a comparison of the computed and measured trailing-edge mean streamline patterns for
both values of the jet momentum coefficient. The computations shown in these figures are based on the
Baldwin-Lomax model, without modifications. Figure 14(a) is a more detailed version of Fig. 11(a), corre-
sponding to a value of jet momentum coefficient, C = 0.03. Figure 14(b) is the corresponding figure
for C = 0.1. Figures 14(c) and 14(d) show the experimental results from Ref. 1 for the same pair of
values of jet momentum coefficient. Recall, now, that the experimental 1ift produced by the value of
C. = 0.03 is much less than that corresponding to the computation for the same value of C . The experi-
mental 1ift for Cu = 0.1 also is much less than the computed 1ift; however, it is above the computed
1ift for the case of Cu = 0.03, see Table 1. The patterns of the flow fields in Figs. 14(a), (b), and
(d) are generally consistent with these observations. The experimental flow pattern for Cu = 0.1, except
for exhibiting some waviness, generally lies between the two computed patterns. Some features appear in
the streamline pattern of Fig. l4(c) that are inconsistent with the 11ft behavior. Although in the imme-
diate vicinity of the surface, the experimental streamlines turn less clockwise than the computed values
shown in Fig. 14(a), consistent with the relative 1ifts, the experimental flow pattern away from the sur-
face indicates more downwash than does the computation. Why this is not reflected in more experimental
Yift is not clear at this time and will require further study and interaction with the experimentors, as
will the anomalous resuits shown in the next figure.

Figure 15 shows comparisons of the measured pressure coefficients on the upper and lower surfaces of
the airfoil in comparison with some of the computations. Figure 15(a) compares the experimental data
(circular symbols), with computed results (solid lines) based on the Baldwin-Lomax model containing cor-
rections for curvature for the same values of jet momentum coefficient, C = 0.03. Figure 15(d) shows a
similar comparison for the Jones-Launder model, with curvature correction. These alternative model com-
parisons are virtually identical. The oscillations in the computed quantities on the upper surface near
the leading edge are believed to have resulted from the first-order curve-fitting procedure employed to
interpolate between the wind tunnel model coordinates in setting up the airfoil surface coordinates for
the computation mesh. It is not believed that these oscillations seriously impair the global results or
the conclusions that can be drawn therefrom. The larger computed 1ift, noted earlier, is shown by the
larger area between the upper and lower lines than exhibited by the area bounded by the experimental
points. In addition, it is shown here that a large part of the increased 1ift evident in the computed
results occurs over the forward portion of the airfoil. The computed drag and pitching moments also will
differ considerably from the measured values because of this behavior.

The cause of the large leading-edge suction pressure shown in the computations and absent in the data
is c¢ritical to our understanding of the directions future turbulence modeling modifications should take
for this class of flow. Towards this end, it was decided to compare computations with data at the same
11ft, accomplished by comparing with experimental data at a higher jet momentum coefficient that provides
the proper 1ift. From Fig. 10 it is seen that such a match exists with the computations of the Baldwin-
Lomax mode! with jet history or the basic Jones-Launder model with Cu = 0.03 and the experimental data
at C = 0.62. The comparisons of pressure coefficients from these computations and the experimental data
are shown in Figs. 15(b) and 15{c). First, it 1s striking how closely the results for the two turbulence
models agree in these figures. In each figure, the apparent area between the computed lines now agrees
more closely with the area between the groups of data points. As in Fig. 15(a), but to a lesser extent,
on the upper surface, the computed pressure coefficient shows more of a suction peak in the vicinity of
the leading edge than is exhibited by the data. At the trailing edge, less suction is generated. It is
clear that an improvement in the turbulence model that would achieve the correct suction peak in the
trailing-edge region, at the proper or matched 1ift, would be helpful in reducing the leading edge suction
peak. This interplay of the behavior of the leading-edge and trailing-edge flow regions was not evident
in the earlier work (Refs. 8 and 9). In the calculations of Ref. 9, "wind tunnel corrections" to the
actual geometric angle of attack, as recommended by the experimenters of Ref. 8, were introduced simulta-
neously with turbulence model changes to improve the pressure coefficient behavior in the leading edge
region. In the current work, with the inclusion of the wind tunnel walls in the calculations, in prin-
ciple one should not be justified in modifying geometrically established angles of attack. The burden
should be on the improvement of the turbulence model so that results, to the accuracy required by the
user, are attained when ambiguities in the boundary conditions are minimized or assessed. For example,
Fig. 16 shows the calculated upper and lower wind tunnel wall static pressure coefficients corresponding
to the case where C = 0.03 with the Jones-Launder turbulence model and some representative experimental
measurements. The d*fferences in the pressure coefficients at the upstream boundary indicate the extent
of the upstream influence on the flow caused by the circulation. Recall that only the total pressure was
assigned at this boundary and these static pressure differences developed as part of the solution. Dif-
ferences between the measured and calculated static pressures at this station would suggest that the
assumption of zero angle of flow for the incoming streamlines, employed in the calculations with
C = 0.03, may have introduced some error. This is an example where more complete documentation (i.e.,
stream angles at the entrance to the test section) would have eliminated some degree of uncertainty in the
calculations.

Before leaving this section, it should be mentioned that none of the solutions described were easily
obtained. The algorithm, developed for compressible flows, seemed to be taxed by the complex low subsonic
flow studied here. Even though the algorithm s robust (in that once debugged, it could be operated with
very large time steps or CFL numbers, as befitting a good implicit code) there was a problem obtaining
quick convergence for the circulation control airfoil at all the conditions studied. Ouring the relaxa-
tion process from an initial flow condition towards a new steady state, the solution would oscillate very
slowly with no apparent physically based characteristic frequency. The oscillation was related more to
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the number of iterations, as seen by comparisons at different values of CFL number. The magnitude of the
oscillations sometimes seemed dependent on the size of the CFL number. On some occasions, the oscilla-
tions persisted indefinitely. The solution behaved as if the feedback between the various boundaries made
the equation set very stiff. The overall lift was the aerodynamic parameter focused upon, and for the
solutions present, this parameter converged to within 1%, even in the presence of oscillations. The
number of iterations required to attain this convergence -level could be from several hundreds to a few
thousand. The larger number of iteration counts was required when the jet momentum coefficient was the low
value of C = 0.03. At the higher value of Cu = 0.1, the convergence rate of a few hundred iterations
is very respectable. Currently the code is unvectorized and computations cost 10 to 15 sec/iteration on a
Cray XMP for the algebraic and two-equation turbulence models, respectively. Increased computational
efficiency, while not critical, is certainly worth pursuing to enhance the code's efficiency at the lower
free stream speeds and lower jet momentum coefficients.

Although the 1% oscillation in 1ift, the overall flow pattern, and the friction drag indicated the
solutions had achieved an acceptable level of convergence, other aerodynamic parameters such as the pitch-
ing moment or the pressure drag, because of their dependence on relatively small differences between large
guantities, continued to show disproportionately large oscillations. It is expected that improving the
numerical fit to the body shape and grid about the leading edge of the airfoil will reduce the raggedness
of the surface pressure in this region shown in Fig. 15. The improved grid may also reduce the range of
the oscillation of the higher order aerodynamic parameters.

CONCLUDING REMARKS

This paper presents the early stages in a program to calibrate and validate a computer code being
developed to compute the performance of circulation control airfoils. The opportunity to attempt this
validation process arose because of 1) the availability of new data from an experiment that included mean
flow and turbulence measurements in addition to model surface pressure data (Ref. 1), and 2) the develop-
ment of a computer code that could account for the presence of a model within wind tunnel walls, with the
latter experiencing slip flow conditions. The code is currently two-dimensional, requiring the model to
be an airfoil, and only accounts for the upper and lower wind tunnel walls. The computer code is also
capable of accepting different kinds of turbulence models, both algebraic or those based on auxiliary
field equations for turbulence quantities. Finally, the code, which is known to be economical for high-
speed compressible flows (Ref. 2) has proven to be only marginally economical for this low-speed flow
condition at the lower jet momentum coefficient. Under these conditions, the code presently is useful
only as a research tool when enough mesh points are employed to provide numerical results that are mesh

independent.

Inclusion of the wind tunnel walls in the calculations was expected to eliminate some of the uncer-
tainties introduced by empirical wind tunnel wall “corrections” and to place the burden squarely on the
turbulence models to achieve an agreement between computations and experimental data, provided adequate
boundary condition data are known for the incoming and outflowing boundaries of the test section. The
present computed results, which show higher suction pressures at the leading edge and less downwash beyond
the trailing edge than indicated in the experimental data, even when total 1ift {is matched to the experi-
mental results, are indicative of a negative effective angle of attack. The cause of this anomalous
behavior is not known at this time, but could result from an induced three-dimensional effect that was not
detected in the experiment and could not be generated by the present two-dimensional flow code.

Despite these aforementioned uncertainties regarding the effects of undefined conditions on the test
section boundaries and the apparent residual angle of attack, even in the presence of the computed wall
effects, and the relatively uneconomical behavior of the compressible flow code applied to low speeds, the
current study provided several positive results regarding the process of validating a code for the design
of circulation control airfoils. Some of these are as follows:

1. Computations applying turbulence models that are used commonly in Navier-Stokes codes, namely,
the Baldwin-Lomax algebraic model and variants to account for curvature and the history of jet
merging with the external flow field or the Jones-Launder k-epsilon mode! with corrections for
streamwise curvature, show little difference between each other and both provide good qualitative
descriptions of the flow fields about the circulation control airfoil.

2. The code proved to be readily adaptable to higher order turbulence modeling, and the cost penalty
of running the two-equation model relative to the zero equation model was only an increase of
50%.

3. The code converged sufficiently rapidly if the initial conditions were a previous solution at
somewhat different flow conditions or with a different turbulence model. It was also noticed
that convergence occurred quite rapidly at the high value of the jet momentum coefficient. These
characteristics should be useful in parametric studies involved in the ultimate validation pro-
cess under low-speed conditions.

4. The code is written in a generalized coordinate frame. This feature allowed generation of the
mesh involving the airfoil and wind tunnel wall to be very direct, and should be easily adapted
to include geometric angles of attack. This will be needed to investigate the apparent angle of



attack evident in the experimenta) data and to allow covering the range of angle of attack mea-
sured in Ref. 1.

5. For the limited cases computed to date, the turbulence models employed indicate quantitative
results that, for given jet mass coefficients, show values of 1ift that are approximately 50% too
high at both values of jet mass flow that have been computed. This suggests that the code could
possibly be "calibrated”, but such a task requires computation at other test conditions to con-
firm the concept.

With these results, decisions have to made how to proceed in advancing the validation of this code.
Should one try to calibrate the code over the entire range of conditions for which experimental data
exists, even though it is apparent that the calibration may involve large, and possibly non-uniform,
adjustments to the computed results? Or should one try to first eliminate the uncertainties in the bound-
ary conditions through consultation with the experimenters and then improve an existing turbulence model,
or obtain a new turbulence model, to yield values of all the aerodynamic coefficients that are close and
consistent with trends of a 1imited set of experimental data? This second approach, if successful, could
enable one to proceed with confidence with the validation process over the ranges for which the circula-
tion control airfoil has been tested.

The authors agree with the latter of these two philosophies, but are aware of the difficuities in
advancing a turbulence model to flow conditions that are large extrapolations beyond the conditions of the
fundamental fluid dynamic experiments upon which the current models utilized here were based. In the
present example, such experiments involved surface jets on planar or curved surfaces, and free shear
Jayers between surface jets and boundary layers; however, the radii of surface curvature and pressure
gradients were orders of magnitude less influential than those which exist in the trailing edge of a cir-
culation airfoil. Thus, it is not surprising that the models employed in the present paper were not ade-
quate for design.

The authors are continuing to develop the computer code. In the near future, the following numerical
and turbulence modeling modifications will be tried:

1. Close attention will be placed on obtaining a smooth body contour at the leading edge to elimi-
nate this as source of numerical problems.

2. Numerical algorithm improvement for low-speed conditions is still warranted and is being pursued.

3. Sensitivity studies will be conducted with variations in the stream angles entering the test
section and with small changes in the angle of attack. (The reasonableness of the magnitudes of
the quantities used in the sensitivity studies will be checked through consultation with the
authors of Ref. 1.)

4, Sensitivity studies with the Jones-Launder model plus curvature will be conducted to test the
need for defining the turbulence, in scale and intensity, at the exit plane of the jet.

5. Wall functions will be introduced to the Jones-Launder model. These were found to help the
Jones-Launder model in transonic flows (Ref. 14) and in subsonic deadwater regions (Ref. 15).

6. The Jones-Launder model will be modified to account for the effects of streamwise curvature by
reinterpreting the kinetic energy equation to account for anisotropy in a manner similar to what
was done in Ref. 1l1.

7. The Jones-Launder model will be modified to relax the eddy viscosity concept through the use of
Rodi's algebraic stress model (Ref. 16).

8. Full Reynolds stress modeling will be introduced in the manner of Ref. 3.

At present it is not clear what level of modeling will lead to results that are reasonably accurate and
characteristic of the behavior of changes in the data with alterations in the flow conditions to warrant
fine tuning through calibration. Success here, will lead to testing the code over the entire range of
conditions of the experiment of Ref. 1 and for a new experiment being conducted at the NASA Ames Research
Center that will extend the data, similar to that obtained in Ref. 1, to a circulation control airfoil
within a transonic flow.

Although Ref. 1 was well written, it was found during the computations described here that occasions
arose when consuitation was required with the authors of that paper to clarify some of the experimenta)
conditions. The excellent cooperation given by these experimentalists was extremely beneficial to the
current work and is a demonstration of the strong need for close cooperation between experimentaiists and
code validators that should be a continuing process for future studies.
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TABLE 1
COMPARISON OF EXPERIMENTAL AND COMPUTED LIFT COEFFICIENTS

SOURCE JET MOM. COEFFICIENT,  LIFTCOEFFICIENT,  ERROR,
c, c, %
EXPERIMENT 0.03 150
COMPUTATIONS
BALDWIN-LOMAX (BL) 0.03 2.26 +51
BL + HISTORY 0.03 251 +67
BL + CURVATURE 0.03 2.06 +37
cC=80
BL + CURVATURE 0.03 - 2.24 +49
+ HISTORY
JONES-LAUNDER (JL) 0.03 254 +69
JL + CURVATURE 0.03 2.08 +39
EXPERIMENT 0.10 3858
COMPUTATIONS
BL 0.10 5.30 +48

REGION OF FLOW FIELD PROVIDED BY REF. 9
FOR PRESCRIBED LIFT AND ANGLE OF ATTACK
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Figure 1.- Sketch showing procedure employing a local computational zone at the trailing edge of a circu-
lation control airfoil,
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Figure 3.- Surface pressure coefficients on the trailing edge of the circulation control airfoil of refer-
ence 8. a) Full field solution of reference 9, Baldwin-Lomax turbulence model plus curvature correc-
tion. b) Local Navier-Stokes solution, Baldwin-Lomax turbulence model plus curvature correction.

c) Local Navier-Stokes solution, Baldwin-Lomax turbulence model, no curvature correction. d) Local
Navier-Stokes solution, Jones-Launder turbulence model, no curvature correction.



Figure 4.- Grid used for full airfoil/test section
computation.

.070

065

y/c

JET LOWER WALL

045 1

040 T T
920 925 930 935
x/c

Figure 5.- Grid detail near jet exit; h/c = 0.002.

100

075

.025 1

ylc
°

-.0251

~-.0751

-1

x/c

Figure 6.- Grid detail over entire trailing edge.

00
900 .925 950 .975 1.000 1.0256 1.050 1.076 1.100

2
- —
1 -
—_—
B
—————
o _Aﬁ-——_
. ——
—_————————
ﬂ_‘-—
-1
-2 v -
-3 -2 -1 (1] 1 2 3 4 5
x/c

Figure 7.- Stream function of flow field in test
section with circulation control airfoil. Baldwin-
Lomax turbulence model; Cu = 0,03,
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a) Stream function. b) Vector field.
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a) Stream function, Jones-lLaunder turbulence model.
c) Stream function, Jones-Launder turbulence model plus curvature correction.

Jones-Launder turbulence model plus curvature correction.

b) Vector field, Jones-lLaunder turbulence
d) Vector field,
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Figure 13.- Comparison of test section stream functions corresponding to two jet mass momentum coeffi-
cients. a) Cu = 0.03. b) Cu = 0.10.
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Figure 14.- Comparison of computed and measured streamlines in the trailing-edge region. a) Computed,
C, = 0.03. b) Computed, C = 0.10. c) Experimental, Cu = 0.03. d) Experimental, C, = 0.10.
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Figure 15.- Pressure coefficient distribution of the upper and lower surfaces of the airfoil. a) Baldwin-
Lomax turbulence model plus curvature correction, with jet momentum coefficient matched to the experi-
mental value. b) Baldwin-Lomax turbulence model plus jet history, with total 1ift matched to the experi-
mental value. c) Jones-Launder turbulence model, with total 1ift matched to the experimental value.

d) Jones-Launder turbulence model corrected for curvature, with jet momentum coefficient matched to the
experimental value.
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Figure 16.~ Comparison of computed and measured pressure coefficients on the upper and lower wind tunnel
walls for the Jones-Launder model with 1ift matched to the experimental value.
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